Reginald Fessenden
Reginald Fessenden

Celebrity Profile

Name: Reginald Fessenden
Occupation: Inventor
Gender: Male
Birth Day: October 6, 1866
Death Date: Jul 22, 1932 (age 65)
Age: Aged 65
Country: Canada
Zodiac Sign: Libra

Social Accounts

Height: in centimeters - N/A
Weight: in kg - N/A
Eye Color: N/A
Hair Color: N/A
Blood Type N/A
Tattoo(s) N/A

Reginald Fessenden

Reginald Fessenden was born on October 6, 1866 in Canada (65 years old). Reginald Fessenden is an Inventor, zodiac sign: Libra. Find out Reginald Fessendennet worth 2020, salary 2020 detail bellow.

Trivia

He made the first broadcast on the radio - beaming a 'Christmas Concert' from near Boston, MA to two ships at sea and his later career he received hundreds of patents for devices in fields varying from television to sonar.

Does Reginald Fessenden Dead or Alive?

As per our current Database, Reginald Fessenden died on Jul 22, 1932 (age 65).

Net Worth

Net Worth 2020

Undisclosed

Salary 2020

Not known

Before Fame

At age 14 he won a mathematics scholarship to Bishop's College School in Quebec.

Biography Timeline

1886

Fessenden's classical education provided him with only a limited amount of scientific and technical training. Interested in increasing his skills in the electrical field, he moved to New York City in 1886, with hopes of gaining employment with the famous inventor, Thomas Edison. However, his initial attempts were rebuffed; in his first application Fessenden wrote, "Do not know anything about electricity, but can learn pretty quick," to which Edison replied, "Have enough men now who do not know about electricity." However, Fessenden persevered, and before the end of the year was hired for a semi-skilled position as an assistant tester for the Edison Machine Works, which was laying underground electrical mains in New York City. He quickly proved his worth, and received a series of promotions, with increasing responsibility for the project. In late 1886, Fessenden began working directly for Edison at the inventor's new laboratory in West Orange, New Jersey as a junior technician. He participated in a broad range of projects, which included work in solving problems in chemistry, metallurgy, and electricity. However, in 1890, facing financial problems, Edison was forced to lay off most of the laboratory employees, including Fessenden. (Fessenden remained an admirer of Edison his entire life, and in 1925 stated that "there is only one figure in history which stands in the same rank as him as an inventor, i. e. Archimedes".)

1890

While growing up Fessenden attended a number of educational institutions. At the young age of nine he was enrolled in the DeVeaux Military school for a year. He next attended Trinity College School in Port Hope, Ontario, from 1877 until the summer of 1879. He also spent a year working for the Imperial Bank at Woodstock because he had not yet reached the age of 16 needed to enroll in college. At the age of fourteen, Bishop's College School in Lennoxville, Quebec, which was a feeder school for Bishop's College and shared the same campus and buildings, granted him a mathematics mastership. Thus, while Fessenden was still a teenager, he taught mathematics to the younger students (some older than himself) at the School, while simultaneously studying with older students at the College. At the age of eighteen, Fessenden left Bishop's without having been awarded a degree, although he had "done substantially all the work necessary", in order to accept a position at the Whitney Institute in Bermuda, where for the next two years he worked as the principal and sole teacher. (This lack of a degree may have hurt Fessenden's employment opportunities. When McGill University in Montreal established an electrical engineering department, his application to become its chairman was turned down.) While in Bermuda, he became engaged to Helen Trott. They married in September 1890 and later had a son, Reginald Kennelly Fessenden.

1892

Taking advantage of his recent practical experience, Fessenden was able to find positions with a series of manufacturing companies. In 1892, he received an appointment as professor for the newly formed Electrical Engineering department at Purdue University in West Lafayette, Indiana; while there he helped the Westinghouse Corporation install the lighting for the 1893 Chicago World Columbian Exposition. Later that year, George Westinghouse personally recruited Fessenden for the newly created position of chair of the Electrical Engineering department at the Western University of Pennsylvania in Pittsburgh (now the University of Pittsburgh).

1900

In 1900 Fessenden left Pittsburgh to work for the United States Weather Bureau, with the objective of demonstrating the practicality of using coastal stations to transmit weather information, thereby avoiding the expense of the existing telegraph lines. The contract called for him to be paid $3,000 per year and provided with work space, assistance, and housing. Fessenden would retain ownership of any inventions, but the agreement also gave the Weather Bureau royalty-free use of any discoveries made during the term of the contract. Fessenden quickly made major advances, especially in receiver design, as he worked to develop audio reception of signals. His initial success came from the invention of a barretter detector. This was followed by an electrolytic detector, consisting of a fine wire dipped in nitric acid, which for the next few years set the standard for sensitivity in radio reception.

1901

Fessenden's basic approach was disclosed in U.S. Patent 706,737, which he applied for on May 29, 1901, and was issued the next year. It called for the use of a high-speed alternator (referred to as "an alternating-current dynamo") that generated "pure sine waves" and produced "a continuous train of radiant waves of substantially uniform strength", or, in modern terminology, a continuous-wave (CW) transmitter. The idea of using continuous-wave radio signals was in direct conflict with the current orthodoxy that the abrupt "whiplash" effect produced by large electrical sparks was needed in order to create adequately strong signals. John Ambrose Fleming, a Marconi associate, was particularly dismissive in his book The Principles of Electric Wave Telegraphy, a detailed review of the state of the art as he saw it that was published in 1906. Reviewing Fessenden's patent, he wrote that "The creation of an electric wave seems to involve a certain suddenness in the beginning of the oscillations, and an alternator giving a simple sine-curve would not be likely to produce the required effect..." (In view of Fessenden's ultimate success, this statement disappeared from the book's 1916 edition.) Fessenden's next step, taken from standard wire-telephone practice, was to insert a simple carbon microphone into the transmission line, which was used to modulate the carrier wave signal for audio transmissions, or, again using modern terms, used to produce amplitude modulated (AM) radio signals.

1902

Fessenden's initial Weather Bureau work took place at Cobb Island, Maryland, located in the Potomac River about 80 kilometers (50 mi) downstream from Washington, DC. As the experimentation expanded, additional stations were built along the Atlantic Coast in North Carolina and Virginia. However, in the midst of promising advances, Fessenden became embroiled in disputes with his sponsor. In particular, he charged that Bureau Chief Willis Moore had attempted to gain a half-share of the patents. Fessenden refused to sign over the rights, and his work for the Weather Bureau ended in August 1902.

In November 1902, two wealthy Pittsburgh, Pennsylvania businessmen, Hay Walker, Jr., and Thomas H. Given, financed the formation of the National Electric Signaling Company (NESCO) to support Fessenden's research. Initially the new company was based in Washington, D.C., where a station was constructed for experimental and demonstration purposes. Two additional demonstration stations were constructed at Collinswood, New Jersey (near Philadelphia) and Jersey City, New Jersey (near New York City). In 1904 an attempt was made to link the General Electric plants in Schenectady, New York and Lynn, Massachusetts, a distance of 185 miles (300 km), however the effort was unsuccessful.

1903

Fessenden contracted with General Electric (GE) to help design and produce a series of high-frequency alternator-transmitters. In 1903, Charles Proteus Steinmetz of GE delivered a 10 kHz version which proved of limited use and could not be directly used as a radio transmitter. Fessenden's request for a faster, more powerful unit was assigned to Ernst F. W. Alexanderson, who in August 1906 delivered an improved model which operated at a transmitting frequency of approximately 50 kHz, although with far less power than Fessenden's rotary-spark transmitters.

1904

Efforts to sell equipment to the U.S. and other governments, as well as private companies, met with little success. An ongoing area of conflict, especially with the U.S. Navy, were the high prices Fessenden tried to charge. The Navy in particular felt Fessenden's quotes were too far above the device's manufacturing costs to be considered reasonable, and contracted with other companies to build equipment that used Fessenden designs. This led to bad feelings and a series of patent infringement lawsuits. An alternate plan to sell the company as a whole was unsuccessful in finding a buyer. Eventually a radical change in company orientation took place. In 1904 it was decided to compete with the existing ocean cables, by setting up a transatlantic radiotelegraph link. The headquarters for company operations was moved to Brant Rock, Massachusetts, which was to be the western terminal for the proposed new service.

1906

The plan was to conduct the transatlantic service using Fessenden-designed rotary spark-gap transmitters. A 420 foot (128 meter) guyed antenna was constructed at Brant Rock, with a similar tower erected at Machrihanish in western Scotland. In January 1906, these stations made the first successful two-way transmission across the Atlantic, exchanging Morse code messages. (Marconi had only achieved one-way transmissions at this time.) However, the system was unable to reliably bridge this distance when the sun was up, or during the summer months when interference levels were higher, so work was suspended until later in the year. Then, on December 6, 1906, the Machrihanish radio tower collapsed in a gale, abruptly ending the transatlantic project before it could begin commercial service. (A detailed review in Engineering magazine blamed the collapse on sub-standard construction, due to "the way in which the joints were made by the man employed for the purpose by the sub-contractors to whom the work was entrusted by the Brown Hoisting Machinery Company" and "The only wonder is that the tower did not fall before.")

The alternator-transmitter achieved the goal of transmitting quality audio signals, but the lack of any way to amplify the signals meant they were somewhat weak. On December 21, 1906, Fessenden made an extensive demonstration of the new alternator-transmitter at Brant Rock, showing its utility for point-to-point wireless telephony, including interconnecting his stations to the wire telephone network. As part of the demonstration, speech was transmitted 18 kilometers (11 miles) to a listening site at Plymouth, Massachusetts. A detailed review of this demonstration appeared in The American Telephone Journal and a summary by Fessenden appeared in Scientific American. A portion of a report produced by Greenleaf W. Pickard of the Telephone Company's Boston office, which includes additional information on some still existing defects, appeared in Ernst Ruhmer's Wireless Telephony in Theory and Practice.

The technical achievements made by Fessenden were not matched by financial success. Walker and Given continued to hope to sell NESCO to a larger company such as the American Telephone & Telegraph Company (AT&T). After the December 21, 1906 demonstrations, AT&T was said to be planning to acquire NESCO, but financial setbacks caused the telephone company to reconsider, and NESCO was unable to find another buyer. There were growing strains between Fessenden and the company owners, and Fessenden's formation of the Fessenden Wireless Company of Canada in Montreal in 1906 may have led to suspicion that he was trying to freeze Walker and Given out of a potentially lucrative competing transatlantic service. The final break occurred in January 1911, when Fessenden was formally dismissed from NESCO. This resulted in his bringing suit against NESCO, for breach of contract. Fessenden won the initial court trial and was awarded damages; however, NESCO prevailed on appeal. To conserve assets, NESCO went into receivership in 1912, and Samuel Kintner was appointed general manager of the company. The legal stalemate would continue for over 15 years. In 1917, NESCO finally emerged from receivership, and was soon renamed the International Radio Telegraph Company. The company limped along for a few years, until it was sold to the Westinghouse Electric & Manufacturing Company in 1920, and the next year its assets, including numerous important Fessenden patents, were sold to the Radio Corporation of America (RCA), which also inherited the longstanding Fessenden legal proceedings. Finally, on March 31, 1928, Fessenden settled his outstanding lawsuits with RCA, receiving a significant cash settlement.

After Fessenden left NESCO, Ernst Alexanderson continued to work on alternator-transmitter development at General Electric, mostly for long range radiotelegraph use. He eventually developed the high-powered Alexanderson alternator, capable of transmitting across the Atlantic, and by 1916 the Fessenden-Alexanderson alternator was more reliable for transoceanic communication than the spark transmitters which were originally used to provide this service. Also, after 1920 radio broadcasting became widespread, and although the stations used vacuum-tube transmitters rather than alternator-transmitters (which vacuum-tubes made obsolete), they employed the same continuous-wave AM signals that Fessenden had introduced in 1906.

Fessenden's home at 45 Waban Hill Road in the village of Chestnut Hill in Newton, Massachusetts is on the National Register of Historic Places and is also a U.S. National Historic Landmark. He bought the house in 1906 or earlier and owned it for the rest of his life.

1907

Until the early 1930s, it was generally accepted that Lee de Forest, who conducted a series of test broadcasts beginning in 1907, and who was widely quoted promoting the potential of organized radio broadcasting, was the first person to transmit music and entertainment by radio. De Forest's first entertainment broadcast occurred in February 1907, when he transmitted electronic telharmonium music from his laboratory station in New York City. This was followed by tests that included, in the fall, Eugenia Farrar singing "I Love You Truly". (Beginning in 1904, the U.S. Navy had broadcast daily time signals and weather reports, but these employed spark transmitters, transmitting in Morse code).

1908

The American Telephone Journal account of the December 21 alternator-transmitter demonstration included the statement that "It is admirably adapted to the transmission of news, music, etc. as, owing to the fact that no wires are needed, simultaneous transmission to many subscribers can be effected as easily as to a few", echoing the words of a handout distributed to the demonstration witnesses, which stated "[Radio] Telephony is admirably adapted for transmitting news, stock quotations, music, race reports, etc. simultaneously over a city, on account of the fact that no wires are needed and a single apparatus can distribute to ten thousand subscribers as easily as to a few. It is proposed to erect stations for this purpose in the large cities here and abroad." However, other than the two reported holiday transmissions, Fessenden does not appear to have conducted any other radio broadcasts, or to have even given additional thought about the potential of a regular broadcast service. In a 1908 comprehensive review of "Wireless Telephony", he included a section titled "possibilities" that listed promising radio telephone uses. Neither the main article, nor this list, makes any reference to broadcasting, instead only noting conventional applications of point-to-point communication, enumerated as "local exchanges", "long-distance lines", "transmarine transmission", "wireless telephony from ship to ship", and "wireless telephone from ship to local exchange".

1911

Although Fessenden ceased radio research after his dismissal from NESCO in 1911, he continued to work in other fields. As early as 1904 he had helped engineer the Niagara Falls power plant for the newly formed Hydro-Electric Power Commission of Ontario. However, his most extensive work was in marine communication as consulting engineer with the Submarine Signal Company which built a widely used aid to navigation using bells, termed a submarine signal, acting much as an underwater foghorn. While there, he invented the Fessenden oscillator, an electromechanical transducer. Though the company immediately began replacing bells and primitive receivers on ships with the new device, it was also the basis for entirely new applications: underwater telegraphy and sonic distance measurement. The later was the basis for sonar (SOund NAvigation Ranging), echo-sounding and the principle applied to radar (RAdio Detection And Ranging). The device was soon put to use for submarines to signal each other, as well as a method for locating icebergs, to help avoid another disaster like the one that sank Titanic. While the company quickly applied his invention to replace the bells of its systems and entered acoustic telegraphy it ignored the echo ranging potential. The echo sounding was invented in 1912 by German pyhsicist Alexander Behm.

1921

In 1921, the Institute of Radio Engineers presented Fessenden with its IRE Medal of Honor. The medallion was gold plated, and somehow Fessenden became convinced that earlier awards had been solid gold, so he angrily returned it. Only after Greenleaf W. Pickard investigated the matter and determined that the prior medals were also plated was Fessenden willing to relent. The next year Philadelphia's Board of Directors of City Trusts awarded Fessenden a John Scott Medal, which included a cash prize of $800, for "his invention of a reception scheme for continuous wave telegraphy and telephony", and recognized him as "One whose labors had been of great benefit." There was suspicion by Fessenden that these two awards had not been made in sincerity but in order to placate him. In his wife's biography, referring to the IRE medal, she quoted the proverb "beware of Greeks bearing gifts". The Scott Medal came under additional suspicion because it had been awarded at the suggestion of Westinghouse engineers, who were working for a company that had had financial disputes with Fessenden. In Helen Fessenden's opinion, "The Medal cost [Westinghouse] nothing and was a good 'sop to Cereberus'", and overall compared the medals to "small change for tips in the pockets of Big Business". In 1929 Fessenden was awarded Scientific American's Safety at Sea Gold Medal, in recognition of his invention "of the Fathometer and other safety instruments for safety at sea".

1925

In 1925, Radio News, saluting Fessenden as "one of the greatest American radio inventors", began a monthly autobiographical series titled "The Inventions of Reginald A. Fessenden", with the intention of publishing the completed installments as a book. However, instead of reviewing his radio work, Fessenden immediately went on a series of tangents, including discussions of which races he believed were the most capable of producing inventions, and the proper approach that government institutions should be taking in order to support inventors. (At the close of the seventh installment, Radio News included a disclaimer that it was "not responsible for any opinions expressed in Dr. Fessenden's article".) After eleven installments Fessenden had only covered his life up to 1893, having discussed virtually nothing about radio, and the series was quietly terminated at this point.

1928

In 1928, as part of a lecture reviewing "The Early History of Radio in the United States", H. P. Davis, commenting on entertainment offerings, asserted that "Reginald Fessenden, probably the first to attempt this, broadcast a program Christmas Eve 1906", but didn't provide any additional details, and his comment was little noticed at the time.

1932

After settling his lawsuit with RCA, Fessenden purchased a small estate called "Wistowe" in Bermuda. He died there on July 22, 1932 and was interred in the cemetery of St. Mark's Church on the island. On the occasion of his death, an editorial in the New York Herald Tribune, "Fessenden Against the World", said:

1956

In the period leading up to the centennial, James E. O'Neal conducted extensive research, but did not find any ships' radio log accounts, or any contemporary literature, to confirm the reported holiday broadcasts. A follow-up article two years later further reported that a similar attempt to verify the details of the broadcasts had taken place in 1956, which had also failed to uncover any confirmation of Fessenden's statements. One alternate possibility proposed by O'Neal was that perhaps something similar to what Fessenden remembered could have taken place during a series of tests conducted in 1909. A review by Donna L. Halper and Christopher H. Sterling suggested that debating the existence of the holiday broadcasts was ignoring the fact that, in their opinion, the December 21 demonstration, which included the playing of a phonograph record, in itself qualified to be considered an entertainment broadcast. Jack Belrose flatly argued that there was no reason to doubt Fessenden's account, in part because it had not been challenged in the years immediately following publication of the Kintner article. Although Fessenden's claim for the first radio broadcast in 1906 is recognized as an IEEE Milestone, in view of the contrasting opinions among radio historians, Mike Adams summarized the situation as "More than 100 years after its possible occurrence, the Fessenden 'first broadcaster' controversy continues."

1961

Beginning in 1961, the Society of Exploration Geophysicists has annually awarded its Reginald Fessenden Award to "a person who has made a specific technical contribution to exploration geophysics". In 1980, a Fessenden-Trott Scholarship was established at Purdue University's School of Electrical and Computer Engineering, in memory of Reginald Fessenden and his wife.

Family Life

Reginald was the oldest of four sons.

🎂 Upcoming Birthday

Currently, Reginald Fessenden is 155 years, 10 months and 2 days old. Reginald Fessenden will celebrate 156th birthday on a Thursday 6th of October 2022. Below we countdown to Reginald Fessenden upcoming birthday.

Days
Hours
Minutes
Seconds

Reginald Fessenden trends

FAQs

  1. Who is Reginald Fessenden ?
  2. How rich is Reginald Fessenden ?
  3. What is Reginald Fessenden 's salary?
  4. When is Reginald Fessenden 's birthday?
  5. When and how did Reginald Fessenden became famous?
  6. How tall is Reginald Fessenden ?
  7. Who is Reginald Fessenden 's girlfriend?
  8. List of Reginald Fessenden 's family members?

You might intereintereststed in

  1. Top 20 Inventor celebrities in British
  2. Top 20 Inventor celebrities in England
  3. Top 20 Inventor celebrities in France
  4. Top 20 Inventor celebrities in United States