Nancy Grace Roman
Nancy Grace Roman

Celebrity Profile

Name: Nancy Grace Roman
Occupation: Astronomer
Gender: Female
Birth Day: May 16, 1925
Age: 95
Country: United States
Zodiac Sign: Taurus

Social Accounts

Height: in centimeters - N/A
Weight: in kg - N/A
Eye Color: N/A
Hair Color: N/A
Blood Type N/A
Tattoo(s) N/A

Nancy Grace Roman

Nancy Grace Roman was born on May 16, 1925 in United States (95 years old). Nancy Grace Roman is an Astronomer, zodiac sign: Taurus. Find out Nancy Grace Romannet worth 2020, salary 2020 detail bellow.

Trivia

After working for NASA for 21 years, she worked to help the Goddard Space Flight Center until 1997.

Net Worth

Net Worth 2020

Undisclosed

Salary 2020

Not known

Before Fame

She started an astronomy club that met once a week when she was eleven.

Biography Timeline

1935

Nancy Grace Roman was born in Nashville, Tennessee, to music teacher Georgia Frances Smith Roman and physicist/mathematician Irwin Roman Shortly thereafter, her father took a job as a geophysicist for an oil company and the family relocated to Oklahoma three months after Roman's birth. Roman and her parents moved to Houston, Texas; New Jersey; and later on, to Michigan and then Nevada in 1935, when her father joined the Civil Service in geophysical research. When she was about 12 years old, the family moved to Baltimore when Irwin Roman was hired as Senior Geophysicist at the Baltimore, MD office of the US Geological Survey. Roman considered her parents to be major influences in her interest in science.

1946

Roman attended Swarthmore College, intending to study astronomy. The dean of women was not encouraging in this; Roman said that “if you insisted on majoring in science or engineering, she wouldn’t have anything more to do with you,” and referred her to the astronomy department, then chaired by Peter van de Kamp. While he was not encouraging, he did teach her astronomy and she worked on the two student telescopes available there, which had been defunct. Roman cites this as being valuable in her “getting a feel for instruments and instrumentation and just having the fun of playing around with observing techniques.” In her sophomore year, she began working at the Sproul Observatory processing astronomical photographic plates, inheriting Van de Kamp’s ethos that since he had used “plates that were taken by his predecessors 50 years earlier, and in turn he felt that he was obligated to replace those with plates that his successors would use 50 years in the future”. Van de Kamp taught Roman in a solo lecture course on astrometry, introducing her to learning about professional astronomy by encouraging her use of the astronomy library. She graduated in February 1946, and van de Kamp suggested that she continue astronomy in graduate studies at the University of Chicago, which was then rebuilding its astronomy department post-World War II. Years later, Roman continued to be involved with her alma mater, serving on the Swarthmore Board of Managers from 1980 to 1988.

After college, she started graduate school at the University of Chicago in March 1946. Finding the classes easier than at Swarthmore, she approached three professors, Otto Struve, George van Biesbroeck, and William Wilson Morgan, asking each for an observational astronomy project to work on. The first gave her a theory project, the second a data analysis project, and Morgan provided an observational project using a 12-inch telescope, most likely the refractor from the Kenwood Astrophysical Observatory. Although Morgan was initially dismissive of Roman, at one point not speaking to her for six months, he did continue to support her research. She went on to receive her Ph.D. in astronomy in 1949, writing a paper on the Ursa Major Moving Group for her thesis.

The last program in which Roman was highly involved was the Hubble Space Telescope, then referred to as the Large Space Telescope (LST). While a large telescope in space had been proposed by Lyman Spitzer in 1946, and astronomers became interested in a 3m-class space telescope in the early 1960s as the Saturn V rocket was being developed, Roman chose to focus on developing smaller-scale OAO telescopes first in order to demonstrate the necessary technologies. She felt that even the modest 12 inch (30.5 cm) telescopes of OAO-2, which did not launch until 1968, were a major leap forward, not least because the development of suitable pointing control systems was a major technological hurdle. Astronomers also promoted the idea of a telescope on the Moon, which Roman felt had too many insurmountable issues such as dust, and engineers at NASA’s Langley Research Center promoted the idea in 1965 of a space telescope with human operators, which Roman considered an absurd complication. After the success of OAO-2, Roman began to entertain beginning the Large Space Telescope, and started giving public lectures touting the scientific value of such a facility. NASA asked the National Academy of Sciences in 1969 to study the science of a 3m-class telescope in space, resulting in an endorsement for NASA to proceed. In 1971 Roman set up the Science Steering Group for the Large Space Telescope, and appointed both NASA engineers and astronomers from all over the country to serve on it, for the express purpose of designing a free-floating space observatory that could meet the community’s needs but would be feasible for NASA to implement.

1950

While at Yerkes, her research focused on stellar spectroscopy, emphasizing F and G type stars and high velocity stars. Her work produced some of the most highly cited papers at that time, including, in 1950, three top-100 papers in a year with over 3,000 publications She was offered research positions at Wayne State University and the University of Southern California, but turned them down as she felt the institutions lacked sufficient astronomical instrumentation, an issue of great importance to her. She traveled to Argonne National Laboratory to use their new astrometry machine for measuring photographic plates, but was unable to convince Yerkes to acquire one; she also advocated for the purchase of a then-novel digital computer for data analysis in 1954, but was turned down by department chair Subrahmanyan Chandrasekhar as he saw computers as not being useful for this purpose. Roman eventually left her job at the university because of the paucity of tenured research positions available to women at the time; they had never had a woman on the academic staff., Gerard Kuiper had recommended to her a position at the Naval Research Laboratory in the new field of radio astronomy.

1954

After leaving the University of Chicago, Roman went to the Naval Research Laboratory and entered the radio astronomy program in 1954. Radio astronomy was then a very young field in the United States, and NRL had taken an early lead by building the largest accurate radio telescope in 1951, a 50-foot parabolic antenna located on top of one of its research buildings. Roman's work at the NRL included radio astronomy, geodesy, and even the propagation of sound underwater. She spent three years there, rising to become head of the microwave spectroscopy section of the radio astronomy program. One of the few people at NRL in radio astronomy with a classical astronomy background, she was consulted on a wide variety of topics. During Roman’s time at NRL, she provided astronomy consultation for the Project Vanguard satellite program, although she did not formally work on any of the rocket projects, introducing her to space astronomy. At the time, she was concerned that the science being done in the rocket projects was not of high quality, though she saw the potential of space astronomy.

1955

From 1955 on, she lived in the Washington, D.C. area, in the later years in Chevy Chase, Maryland with her mother, who died in 1992. Outside her work, Roman enjoyed going to lectures and concerts and was active in the American Association of University Women. She died on December 25, 2018 following a long illness.

1956

While at NRL, Roman received an invitation to speak on her work with stars in Armenia, then in the Soviet Union, in 1956 for the dedication of the Byurakan Observatory. This cemented her international reputation, and as she was the first civilian to visit the country after the start of the Cold War, the visit also raised her visibility in the United States, with invitations to speak about the trip leading to a series of astronomy lectures. Her reputation was well established, including with people at the newly-formed National Aeronautics and Space Administration (NASA).

1959

After her work at the Yerkes and McDonald Observatories, one of Roman's earliest publications was a 1955 catalog of high velocity stars, published in the Astrophysical Journal Supplement Series. She documented new “spectral types, photoelectric magnitudes and colors, and spectroscopic parallaxes for about 600 high-velocity stars.” One result of this was that her “UV excess” method became widely used by astronomers to select stars with more heavier elements using only the colors of the stars rather than having to take spectra. In 1959, Roman wrote a paper on the detection of extraterrestrial planets. She also did research and published on the subjects of locating constellations from their 1875.0 positions, explaining how she discovered this,

Roman’s radio astronomy work included mapping much of the Milky Way galaxy at a frequency of 440MHz, determining the spectral break in the nonthermal radio emission. She also pioneered the use of radio astronomy in geodetic work, including radar ranging to improve our calculation of the distance to the Moon as a wavelength of 10cm (2.86GHz). Roman presented this at a geodesy conference in 1959 as the best way to determine the mass of the Earth.

In 1959, Roman proposed, perhaps for the first time, that detecting planets around other stars might be possible using a space-based telescope, and even suggested a technique employing a rotated coronagraphic mask; a similar approach was ultimately used with the Hubble Space Telescope to image the possible exoplanet Fomalhaut B (ref K.) and will be used by WFIRST to image exoplanets similar to the giant planets in our own solar system. She also believed as early as 1980 that the future Hubble would be able to detect Jupiter exoplanets by astrometry; this was successful in 2002 when astronomers characterized a previously discovered planet around the star Gliese 876.

1962

Roman's position became Chief of Astronomy and Solar Physics at NASA from 1961 to 1963. During this time, she oversaw the development of the Orbiting Solar Observatory (OSO) program, developing and launching OSO 1 in May 1962 and developing OSO 2, (February 1965) and OSO 3 (March 1967). She held various other positions in NASA, including Chief of Astronomy and Relativity.

She also led, from 1959, the orbiting astronomical observatories (OAO) program, working with engineer Dixon Ashworth, initially a series of optical and ultraviolet telescopes. The first, OAO-1, was slated to be launched in 1962, but technical difficulties resulted in a descoped version launched in 1966, but which failed three days after reaching orbit. Roman explained these problems by analogy in 2018:

1968

She continued to develop Orbiting Astronomical Observatory 2, launched in December 1968, which became the first successful space telescope. OAO-3, named Copernicus, was a highly successful ultraviolet telescope which operated from 1972 1981.

Roman worked with Jack Holtz, on the small astronomy satellite and Don Burrowbridge on the space telescope. She also set up NASA’s scientific ballooning program, inheriting the Stratoscope balloon projects led by Martin Schwarzschild from the ONR and the National Science Foundation. Roman also led the development of NASA’s airborne astronomy program, beginning with a 12-inch telescope in a Learjet in 1968 and followed in 1974 by the Kuiper Airborne Observatory with a 36-inch telescope, opening up the obscured infrared region of the spectrum for astronomical observations to researchers such as Frank J. Low. Other long wavelength missions started during her tenure were the Cosmic Background Explorer, which (although she was initially unconvinced would be able to pass review) garnered the Nobel Prize in 2006 for two of its leading scientists, and the Infrared Astronomy Satellite, both of which were overseen by Nancy Boggess, who Roman had hired in 1968 to help manage the growing portfolio of astronomy missions. Roman was also instrumental in NASA’s acceptance of partnership in the International Ultraviolet Explorer, which she felt was her greatest success, saying, “IUE was an uphill fight. I don't mean I didn't have some support, but I think I carried it on almost single handedly.”

1970

Roman oversaw the development and launch of the three small astronomical satellites: the X-ray explorer Uhuru (satellite) in 1970 with Riccardo Giacconi, the gamma-ray telescope Small Astronomy Satellite 2 in 1972, and the multi-instrument X-ray telescope Small Astronomy Satellite 3 in 1975. Other projects she oversaw included four geodetic satellites. She planned for other smaller programs such as the Astronomy Rocket Program, the Scout Probe to measure the relativistic gravity redshift, programs for high energy astronomy observatories, and other experiments on Spacelab, Gemini, Apollo, and Skylab. Roman was known to be blunt in her dealings, or as Robert Zimmerman put it, "her hard-nosed and realistic manner of approving or denying research projects had made her disliked by many in the astronomical community". This was very much in evidence in the early 1960s when she terminated the relativity program, which at the time consisted of three separate projects, when the Pound-Rebka experiment achieved better accuracy than was projected for the space-based projects.

1972

Roman was very involved with the early planning and specifically, the setting up of the program structure. According to Robert Zimmerman, "Roman had been the driving force for an LST from its earliest days" and that she, along with astronomer Charles Robert O’Dell, hired in 1972 to be the Project Scientist under Roman as the Program Scientist, “were the primary advocates and overseers of the LST within NASA, and their efforts working with the astronomical community produced a detailed paradigm for NASA operation of a large scientific project that now serves as a standard for large astronomical facilities.” This included creating and devolving responsibility for mission science operations to the Space Telescope Science Institute. With both the astronomical community and the NASA hierarchy convinced of the feasibility and value of the LST, Roman then spoke to politically-connected men in a series of dinners hosted by NASA Administrator James Webb in order to build support for the LST project, and then wrote testimony for Congress throughout the 1970s to continue to justify the telescope. She also invested in detector technology, resulting in the Hubble being the first major observatory to use Charge-Coupled Device detectors (although these had been flown in space in 1976 in the KH-11 Kennen reconnaissance satellites). Roman's final role in the development of Hubble was to serve on the selection board for its science operations.

1979

After working for NASA for twenty-one years, she took an early retirement opportunity in 1979 in part to allow her to care for her elderly mother, although she continued on as a consultant for another year in order to complete the selection of STScI. Roman was interested in learning computer programming, and so audited a course on FORTRAN at Montgomery College that garnered her a job as a consultant for ORI, Inc. from 1980 to 1988. In that role, she was able to support research in geodesy and the development of astronomical catalogs, two of her former research areas. This led to her becoming the head of the Astronomical Data Center at NASA’s Goddard Space Flight Center in 1995. She continued her work until 1997 for contractors who supported the Goddard Space Flight Center. Roman then spent three years teaching advanced junior high and high school students and K-12 science teachers, including those in underserved districts,, and then spent ten years recording astronomical textbooks for Reading for the Blind and Dyslexic. In a 2017 interview, Roman said: “I like to talk to children about the advantages of going into science and particularly to tell the girls, by showing them my life, that they can be scientists and succeed.”

1980

Like most women in the sciences in the mid-twentieth century, Roman was faced with problems related to male domination in science and technology and the roles perceived as appropriate for women in that time period. She was discouraged from going into astronomy by people around her. In an interview with Voice of America, Roman remembered asking her high school guidance counselor if she could take second year algebra instead of Latin. "She looked down her nose at me and sneered, 'What kind of lady would take mathematics instead of Latin?' That was the sort of reception I got most of the way", recalled Roman. At one time, she was one of very few women in NASA, being the only woman with an executive position. She attended courses entitled, "Women in Management", in Michigan and at Penn State to learn about issues regarding being a woman in a management position. However, Roman stated in an interview in 1980 that the courses were dissatisfying and addressed women's interests rather than women's problems. In 1963, when entry to the astronaut corps was restricted to men, Roman said in a speech that “I believe that there will be women astronauts some time, just as there are women airplane pilots;” however, in her position she did not affect change to this, something she admitted to regretting.

2017

In recognition of her advancement of women in senior science management, Roman received recognitions from several women’s organizations, including the Women’s Education and Industrial Union, the Ladies’ Home Journal Magazine, Women in Aerospace, the Women’s History Museum, and the American Association of University Women. She was also one of four women featured in 2017 in the “Women of NASA LEGO Set,” which of all her honors she described as “by far the most fun.”

2018

At a lecture by Harold Urey at NASA, Roman was approached by Jack Clark, who asked whether she knew someone interested in creating a program for space astronomy at NASA. She interpreted that as an invitation to apply, and was the applicant who accepted the position. While the position nominally allowed for 20% of her time to be used for scientific research, she recognized that such a position would effectively mean she was giving up research, but, as she said in 2018, “the chance to start with a clean slate to map out a program that I thought would influence astronomy for fifty years was more than I could resist.” Roman arrived at NASA in late February 1959 as Head of Observational Astronomy. She quickly inherited a broad program which included the Orbiting Solar Observatories and geodesy and relativity. In early 1960, Roman became the first astronomer in the position of Chief of Astronomy in NASA's Office of Space Science, setting up the initial program; she was also the first woman to hold an executive position at the space agency.

Family Life

Nancy was born to geophysicist Irwin Roman and music teacher Georgia Smith Roman.

🎂 Upcoming Birthday

Currently, Nancy Grace Roman is 96 years, 5 months and 2 days old. Nancy Grace Roman will celebrate 97th birthday on a Monday 16th of May 2022. Below we countdown to Nancy Grace Roman upcoming birthday.

Days
Hours
Minutes
Seconds

Nancy Grace Roman trends

FAQs

  1. Who is Nancy Grace Roman ?
  2. How rich is Nancy Grace Roman ?
  3. What is Nancy Grace Roman 's salary?
  4. When is Nancy Grace Roman 's birthday?
  5. When and how did Nancy Grace Roman became famous?
  6. How tall is Nancy Grace Roman ?
  7. Who is Nancy Grace Roman 's girlfriend?
  8. List of Nancy Grace Roman 's family members?

You might intereintereststed in

  1. Top 20 Astronomer celebrities in United States