Name: | Gottfried W. Leibniz |
Real Name: | Gottfried Wilhelm Leibniz |
Occupation: | Scientists |
Gender: | Male |
Birth Day: | July 1, 1646 |
Death Date: | 14 November 1716(1716-11-14) (aged 70) Hanover, Electorate of Hanover, Holy Roman Empire |
Age: | Aged 70 |
Birth Place: | Leipzig, Electorate of Saxony, Holy Roman Empire, Germany |
Zodiac Sign: | Leo |
Height: | in centimeters - N/A |
Weight: | in kg - N/A |
Eye Color: | N/A |
Hair Color: | N/A |
Blood Type | N/A |
Tattoo(s) | N/A |
As per our current Database, Gottfried W. Leibniz died on 14 November 1716(1716-11-14) (aged 70)
Hanover, Electorate of Hanover, Holy Roman Empire.
Gottfried Leibniz was born on 1 July 1646, toward the end of the Thirty Years' War, in Leipzig, Saxony, to Friedrich Leibniz and Catharina Schmuck. Friedrich noted in his family journal:
In April 1661 he enrolled in his father's former university at age 14, and completed his bachelor's degree in Philosophy in December 1662. He defended his Disputatio Metaphysica de Principio Individui (Metaphysical Disputation on the Principle of Individuation), which addressed the principle of individuation, on 9 June 1663. Leibniz earned his master's degree in Philosophy on 7 February 1664. He published and defended a dissertation Specimen Quaestionum Philosophicarum ex Jure collectarum (An Essay of Collected Philosophical Problems of Right), arguing for both a theoretical and a pedagogical relationship between philosophy and law, in December 1664. After one year of legal studies, he was awarded his bachelor's degree in Law on 28 September 1665. His dissertation was titled De conditionibus (On Conditions).
In early 1666, at age 19, Leibniz wrote his first book, De Arte Combinatoria (On the Combinatorial Art), the first part of which was also his habilitation thesis in Philosophy, which he defended in March 1666. De Arte Combinatoria was inspired by Ramon Llull's Ars Magna and contained a proof of the existence of God, cast in geometrical form, and based on the argument from motion.
His next goal was to earn his license and Doctorate in Law, which normally required three years of study. In 1666, the University of Leipzig turned down Leibniz's doctoral application and refused to grant him a Doctorate in Law, most likely due to his relative youth. Leibniz subsequently left Leipzig.
Leibniz then enrolled in the University of Altdorf and quickly submitted a thesis, which he had probably been working on earlier in Leipzig. The title of his thesis was Disputatio Inauguralis de Casibus Perplexis in Jure (Inaugural Disputation on Ambiguous Legal Cases). Leibniz earned his license to practice law and his Doctorate in Law in November 1666. He next declined the offer of an academic appointment at Altdorf, saying that "my thoughts were turned in an entirely different direction".
Leibniz's first position was as a salaried secretary to an alchemical society in Nuremberg. He knew fairly little about the subject at that time but presented himself as deeply learned. He soon met Johann Christian von Boyneburg (1622–1672), the dismissed chief minister of the Elector of Mainz, Johann Philipp von Schönborn. Von Boyneburg hired Leibniz as an assistant, and shortly thereafter reconciled with the Elector and introduced Leibniz to him. Leibniz then dedicated an essay on law to the Elector in the hope of obtaining employment. The stratagem worked; the Elector asked Leibniz to assist with the redrafting of the legal code for the Electorate. In 1669, Leibniz was appointed assessor in the Court of Appeal. Although von Boyneburg died late in 1672, Leibniz remained under the employment of his widow until she dismissed him in 1674.
In this regard, a 1669 invitation from Duke John Frederick of Brunswick to visit Hanover proved to have been fateful. Leibniz had declined the invitation, but had begun corresponding with the duke in 1671. In 1673, the duke offered Leibniz the post of counsellor. Leibniz very reluctantly accepted the position two years later, only after it became clear that no employment was forthcoming in Paris, whose intellectual stimulation he relished, or with the Habsburg imperial court.
In 1671, Leibniz began to invent a machine that could execute all four arithmetic operations, gradually improving it over a number of years. This "stepped reckoner" attracted fair attention and was the basis of his election to the Royal Society in 1673. A number of such machines were made during his years in Hanover by a craftsman working under his supervision. They were not an unambiguous success because they did not fully mechanize the carry operation. Couturat reported finding an unpublished note by Leibniz, dated 1674, describing a machine capable of performing some algebraic operations. Leibniz also devised a (now reproduced) cipher machine, recovered by Nicholas Rescher in 2010. In 1693, Leibniz described a design of a machine which could, in theory, integrate differential equations, which he called "integraph".
Von Boyneburg did much to promote Leibniz's reputation, and the latter's memoranda and letters began to attract favorable notice. After Leibniz's service to the Elector there soon followed a diplomatic role. He published an essay, under the pseudonym of a fictitious Polish nobleman, arguing (unsuccessfully) for the German candidate for the Polish crown. The main force in European geopolitics during Leibniz's adult life was the ambition of Louis XIV of France, backed by French military and economic might. Meanwhile, the Thirty Years' War had left German-speaking Europe exhausted, fragmented, and economically backward. Leibniz proposed to protect German-speaking Europe by distracting Louis as follows. France would be invited to take Egypt as a stepping stone towards an eventual conquest of the Dutch East Indies. In return, France would agree to leave Germany and the Netherlands undisturbed. This plan obtained the Elector's cautious support. In 1672, the French government invited Leibniz to Paris for discussion, but the plan was soon overtaken by the outbreak of the Franco-Dutch War and became irrelevant. Napoleon's failed invasion of Egypt in 1798 can be seen as an unwitting, late implementation of Leibniz's plan, after the Eastern hemisphere colonial supremacy in Europe had already passed from the Dutch to the British.
Thus Leibniz went to Paris in 1672. Soon after arriving, he met Dutch physicist and mathematician Christiaan Huygens and realised that his own knowledge of mathematics and physics was patchy. With Huygens as his mentor, he began a program of self-study that soon pushed him to making major contributions to both subjects, including discovering his version of the differential and integral calculus. He met Nicolas Malebranche and Antoine Arnauld, the leading French philosophers of the day, and studied the writings of Descartes and Pascal, unpublished as well as published. He befriended a German mathematician, Ehrenfried Walther von Tschirnhaus; they corresponded for the rest of their lives.
When it became clear that France would not implement its part of Leibniz's Egyptian plan, the Elector sent his nephew, escorted by Leibniz, on a related mission to the English government in London, early in 1673. There Leibniz came into acquaintance of Henry Oldenburg and John Collins. He met with the Royal Society where he demonstrated a calculating machine that he had designed and had been building since 1670. The machine was able to execute all four basic operations (adding, subtracting, multiplying, and dividing), and the society quickly made him an external member.
The Brunswicks tolerated the enormous effort Leibniz devoted to intellectual pursuits unrelated to his duties as a courtier, pursuits such as perfecting calculus, writing about other mathematics, logic, physics, and philosophy, and keeping up a vast correspondence. He began working on calculus in 1674; the earliest evidence of its use in his surviving notebooks is 1675. By 1677 he had a coherent system in hand, but did not publish it until 1684. Leibniz's most important mathematical papers were published between 1682 and 1692, usually in a journal which he and Otto Mencke founded in 1682, the Acta Eruditorum. That journal played a key role in advancing his mathematical and scientific reputation, which in turn enhanced his eminence in diplomacy, history, theology, and philosophy.
In 1675 he tried to get admitted to the French Academy of Sciences as a foreign honorary member, but it was considered that there were already enough foreigners there and so no invitation came. He left Paris in October 1676.
Leibniz is credited, along with Sir Isaac Newton, with the discovery of calculus (differential and integral calculus). According to Leibniz's notebooks, a critical breakthrough occurred on 11 November 1675, when he employed integral calculus for the first time to find the area under the graph of a function y = f(x). He introduced several notations used to this day, for instance the integral sign ∫, representing an elongated S, from the Latin word summa, and the d used for differentials, from the Latin word differentia. Leibniz did not publish anything about his calculus until 1684. Leibniz expressed the inverse relation of integration and differentiation, later called the fundamental theorem of calculus, by means of a figure in his 1693 paper Supplementum geometriae dimensoriae.... However, James Gregory is credited for the theorem's discovery in geometric form, Isaac Barrow proved a more generalized geometric version, and Newton developed supporting theory. The concept became more transparent as developed through Leibniz's formalism and new notation. The product rule of differential calculus is still called "Leibniz's law". In addition, the theorem that tells how and when to differentiate under the integral sign is called the Leibniz integral rule.
Leibniz met Spinoza in 1676, read some of his unpublished writings, and has since been suspected of appropriating some of Spinoza's ideas. While Leibniz admired Spinoza's powerful intellect, he was also forthrightly dismayed by Spinoza's conclusions, especially when these were inconsistent with Christian orthodoxy.
Because Leibniz was a mathematical novice when he first wrote about the characteristic, at first he did not conceive it as an algebra but rather as a universal language or script. Only in 1676 did he conceive of a kind of "algebra of thought", modeled on and including conventional algebra and its notation. The resulting characteristic included a logical calculus, some combinatorics, algebra, his analysis situs (geometry of situation), a universal concept language, and more. What Leibniz actually intended by his characteristica universalis and calculus ratiocinator, and the extent to which modern formal logic does justice to calculus, may never be established. Leibniz's idea of reasoning through a universal language of symbols and calculations remarkably foreshadows great 20th-century developments in formal systems, such as Turing completeness, where computation was used to define equivalent universal languages (see Turing degree).
In 1677, he was promoted, at his request, to Privy Counselor of Justice, a post he held for the rest of his life. Leibniz served three consecutive rulers of the House of Brunswick as historian, political adviser, and most consequentially, as librarian of the ducal library. He thenceforth employed his pen on all the various political, historical, and theological matters involving the House of Brunswick; the resulting documents form a valuable part of the historical record for the period.
In 1677, Leibniz called for a European confederation, governed by a council or senate, whose members would represent entire nations and would be free to vote their consciences; this is sometimes considered an anticipation of the European Union. He believed that Europe would adopt a uniform religion. He reiterated these proposals in 1715.
Leibniz was groping towards hardware and software concepts worked out much later by Charles Babbage and Ada Lovelace. In 1679, while mulling over his binary arithmetic, Leibniz imagined a machine in which binary numbers were represented by marbles, governed by a rudimentary sort of punched cards. Modern electronic digital computers replace Leibniz's marbles moving by gravity with shift registers, voltage gradients, and pulses of electrons, but otherwise they run roughly as Leibniz envisioned in 1679.
Leibniz arranged the coefficients of a system of linear equations into an array, now called a matrix, in order to find a solution to the system if it existed. This method was later called Gaussian elimination. Leibniz laid down the foundations and theory of determinants, although Seki Takakazu discovered determinants well before Leibniz. His works show calculating the determinants using cofactors. Calculating the determinant using cofactors is named the Leibniz formula. Finding the determinant of a matrix using this method proves impractical with large n, requiring to calculate n! products and the number of n-permutations. He also solved systems of linear equations using determinants, which is now called Cramer's rule. This method for solving systems of linear equations based on determinants was found in 1684 by Leibniz (Cramer published his findings in 1750). Although Gaussian elimination requires O ( n 3 ) {\displaystyle O(n^{3})} arithmetic operations, linear algebra textbooks still teach cofactor expansion before LU factorization.
Leibniz began promoting a project to use windmills to improve the mining operations in the Harz Mountains. This project did little to improve mining operations and was shut down by Duke Ernst August in 1685.
Leibniz dated his beginning as a philosopher to his Discourse on Metaphysics, which he composed in 1686 as a commentary on a running dispute between Nicolas Malebranche and Antoine Arnauld. This led to an extensive and valuable correspondence with Arnauld; it and the Discourse were not published until the 19th century. In 1695, Leibniz made his public entrée into European philosophy with a journal article titled "New System of the Nature and Communication of Substances". Between 1695 and 1705, he composed his New Essays on Human Understanding, a lengthy commentary on John Locke's 1690 An Essay Concerning Human Understanding, but upon learning of Locke's 1704 death, lost the desire to publish it, so that the New Essays were not published until 1765. The Monadologie, composed in 1714 and published posthumously, consists of 90 aphorisms.
Leibniz's 1690 discovery of his algebra of concepts (deductively equivalent to the Boolean algebra) and the associated metaphysics, are of interest in present-day computational metaphysics.
Leibniz was appointed Librarian of the Herzog August Library in Wolfenbüttel, Lower Saxony, in 1691.
The population of Hanover was only about 10,000, and its provinciality eventually grated on Leibniz. Nevertheless, to be a major courtier to the House of Brunswick was quite an honor, especially in light of the meteoric rise in the prestige of that House during Leibniz's association with it. In 1692, the Duke of Brunswick became a hereditary Elector of the Holy Roman Empire. The British Act of Settlement 1701 designated the Electress Sophia and her descent as the royal family of England, once both King William III and his sister-in-law and successor, Queen Anne, were dead. Leibniz played a role in the initiatives and negotiations leading up to that Act, but not always an effective one. For example, something he published anonymously in England, thinking to promote the Brunswick cause, was formally censured by the British Parliament.
Although the mathematical notion of function was implicit in trigonometric and logarithmic tables, which existed in his day, Leibniz was the first, in 1692 and 1694, to employ it explicitly, to denote any of several geometric concepts derived from a curve, such as abscissa, ordinate, tangent, chord, and the perpendicular (see History of the function concept). In the 18th century, "function" lost these geometrical associations. Leibniz also believed that the sum of an infinite number of zeros would equal to one half using the analogy of the creation of the world from nothing. Leibniz was also one of the pioneers in actuarial science, calculating the purchase price of life annuities and the liquidation of a state's debt.
Leibniz emphasized that research was a collaborative endeavor. Hence he warmly advocated the formation of national scientific societies along the lines of the British Royal Society and the French Académie Royale des Sciences. More specifically, in his correspondence and travels he urged the creation of such societies in Dresden, Saint Petersburg, Vienna, and Berlin. Only one such project came to fruition; in 1700, the Berlin Academy of Sciences was created. Leibniz drew up its first statutes, and served as its first President for the remainder of his life. That Academy evolved into the German Academy of Sciences, the publisher of the ongoing critical edition of his works.
In 1708, John Keill, writing in the journal of the Royal Society and with Newton's presumed blessing, accused Leibniz of having plagiarised Newton's calculus. Thus began the calculus priority dispute which darkened the remainder of Leibniz's life. A formal investigation by the Royal Society (in which Newton was an unacknowledged participant), undertaken in response to Leibniz's demand for a retraction, upheld Keill's charge. Historians of mathematics writing since 1900 or so have tended to acquit Leibniz, pointing to important differences between Leibniz's and Newton's versions of calculus.
In 1711, while traveling in northern Europe, the Russian Tsar Peter the Great stopped in Hanover and met Leibniz, who then took some interest in Russian matters for the rest of his life. In 1712, Leibniz began a two-year residence in Vienna, where he was appointed Imperial Court Councillor to the Habsburgs. On the death of Queen Anne in 1714, Elector George Louis became King George I of Great Britain, under the terms of the 1701 Act of Settlement. Even though Leibniz had done much to bring about this happy event, it was not to be his hour of glory. Despite the intercession of the Princess of Wales, Caroline of Ansbach, George I forbade Leibniz to join him in London until he completed at least one volume of the history of the Brunswick family his father had commissioned nearly 30 years earlier. Moreover, for George I to include Leibniz in his London court would have been deemed insulting to Newton, who was seen as having won the calculus priority dispute and whose standing in British official circles could not have been higher. Finally, his dear friend and defender, the Dowager Electress Sophia, died in 1714.
From 1711 until his death, Leibniz was engaged in a dispute with John Keill, Newton and others, over whether Leibniz had invented calculus independently of Newton. This subject is treated at length in the article Leibniz–Newton calculus controversy.
Leibniz died in Hanover in 1716. At the time, he was so out of favor that neither George I (who happened to be near Hanover at that time) nor any fellow courtier other than his personal secretary attended the funeral. Even though Leibniz was a life member of the Royal Society and the Berlin Academy of Sciences, neither organization saw fit to honor his death. His grave went unmarked for more than 50 years. Leibniz was eulogized by Fontenelle, before the French Academy of Sciences in Paris, which had admitted him as a foreign member in 1700. The eulogy was composed at the behest of the Duchess of Orleans, a niece of the Electress Sophia.
One of the earliest popular but indirect expositions of Leibniz was Voltaire's satire Candide, published in 1759. Leibniz was lampooned as Professor Pangloss, described as "the greatest philosopher of the Holy Roman Empire".
Leibniz's long march to his present glory began with the 1765 publication of the Nouveaux Essais, which Kant read closely. In 1768, Louis Dutens edited the first multi-volume edition of Leibniz's writings, followed in the 19th century by a number of editions, including those edited by Erdmann, Foucher de Careil, Gerhardt, Gerland, Klopp, and Mollat. Publication of Leibniz's correspondence with notables such as Antoine Arnauld, Samuel Clarke, Sophia of Hanover, and her daughter Sophia Charlotte of Hanover, began.
Leibniz mainly wrote in three languages: scholastic Latin, French and German. During his lifetime, he published many pamphlets and scholarly articles, but only two "philosophical" books, the Combinatorial Art and the Théodicée. (He published numerous pamphlets, often anonymous, on behalf of the House of Brunswick-Lüneburg, most notably the "De jure suprematum" a major consideration of the nature of sovereignty.) One substantial book appeared posthumously, his Nouveaux essais sur l'entendement humain, which Leibniz had withheld from publication after the death of John Locke. Only in 1895, when Bodemann completed his catalogue of Leibniz's manuscripts and correspondence, did the enormous extent of Leibniz's Nachlass become clear: about 15,000 letters to more than 1000 recipients plus more than 40,000 other items. Moreover, quite a few of these letters are of essay length. Much of his vast correspondence, especially the letters dated after 1700, remains unpublished, and much of what is published has appeared only in recent decades. The amount, variety, and disorder of Leibniz's writings are a predictable result of a situation he described in a letter as follows:
In 1900, Bertrand Russell published a critical study of Leibniz's metaphysics. Shortly thereafter, Louis Couturat published an important study of Leibniz, and edited a volume of Leibniz's heretofore unpublished writings, mainly on logic. They made Leibniz somewhat respectable among 20th-century analytical and linguistic philosophers in the English-speaking world (Leibniz had already been of great influence to many Germans such as Bernhard Riemann). For example, Leibniz's phrase salva veritate, meaning interchangeability without loss of or compromising the truth, recurs in Willard Quine's writings. Nevertheless, the secondary literature on Leibniz did not really blossom until after World War II. This is especially true of English speaking countries; in Gregory Brown's bibliography fewer than 30 of the English language entries were published before 1946. American Leibniz studies owe much to Leroy Loemker (1904–1985) through his translations and his interpretive essays in LeClerc (1973).
Leibniz's calculus ratiocinator, which resembles symbolic logic, can be viewed as a way of making such calculations feasible. Leibniz wrote memoranda that can now be read as groping attempts to get symbolic logic—and thus his calculus—off the ground. These writings remained unpublished until the appearance of a selection edited by Carl Immanuel Gerhardt (1859). Louis Couturat published a selection in 1901; by this time the main developments of modern logic had been created by Charles Sanders Peirce and by Gottlob Frege.
The systematic cataloguing of all of Leibniz's Nachlass began in 1901. It was hampered by two world wars and then by decades of German division into two states with the Cold War's "iron curtain" in between, separating scholars, and also scattering portions of his literary estates. The ambitious project has had to deal with writings in seven languages, contained in some 200,000 written and printed pages. In 1985 it was reorganized and included in a joint program of German federal and state (Länder) academies. Since then the branches in Potsdam, Münster, Hanover and Berlin have jointly published 57 volumes of the critical edition, with an average of 870 pages, and prepared index and concordance works.
Leibniz also wrote a short paper, Primae veritates, first published by Louis Couturat in 1903 (pp. 518–523) summarizing his views on metaphysics. The paper is undated; that he wrote it while in Vienna in 1689 was determined only in 1999, when the ongoing critical edition finally published Leibniz's philosophical writings for the period 1677–90. Couturat's reading of this paper was the launching point for much 20th-century thinking about Leibniz, especially among analytic philosophers. But after a meticulous study of all of Leibniz's philosophical writings up to 1688—a study the 1999 additions to the critical edition made possible—Mercer (2001) begged to differ with Couturat's reading; the jury is still out.
In 1906, Garland published a volume of Leibniz's writings bearing on his many practical inventions and engineering work. To date, few of these writings have been translated into English. Nevertheless, it is well understood that Leibniz was a serious inventor, engineer, and applied scientist, with great respect for practical life. Following the motto theoria cum praxi, he urged that theory be combined with practical application, and thus has been claimed as the father of applied science. He designed wind-driven propellers and water pumps, mining machines to extract ore, hydraulic presses, lamps, submarines, clocks, etc. With Denis Papin, he created a steam engine. He even proposed a method for desalinating water. From 1680 to 1685, he struggled to overcome the chronic flooding that afflicted the ducal silver mines in the Harz Mountains, but did not succeed.
The use of infinitesimals in mathematics was frowned upon by followers of Karl Weierstrass, but survived in science and engineering, and even in rigorous mathematics, via the fundamental computational device known as the differential. Beginning in 1960, Abraham Robinson worked out a rigorous foundation for Leibniz's infinitesimals, using model theory, in the context of a field of hyperreal numbers. The resulting non-standard analysis can be seen as a belated vindication of Leibniz's mathematical reasoning. Robinson's transfer principle is a mathematical implementation of Leibniz's heuristic law of continuity, while the standard part function implements the Leibnizian transcendental law of homogeneity.
Leibniz may have been the first computer scientist and information theorist. Early in life, he documented the binary numeral system (base 2), then revisited that system throughout his career. While Leibniz was examining other cultures to compare his metaphysical views, he encountered an ancient Chinese book I Ching. Leibniz interpreted a diagram which showed yin and yang and corresponded it to a zero and one. More information can be found in the Sinophile section. Leibniz may have plagiarized Juan Caramuel y Lobkowitz and Thomas Harriot, who independently developed the binary system, as he was familiar with their works on the binary system. Juan Caramuel y Lobkowitz worked extensively on logarithms including logarithms with base 2. Thomas Harriot's manuscripts contained a table of binary numbers and their notation, which demonstrated that any number could be written on a base 2 system. Regardless, Leibniz simplified the binary system and articulated logical properties such as conjunction, disjunction, negation, identity, inclusion, and the empty set. He anticipated Lagrangian interpolation and algorithmic information theory. His calculus ratiocinator anticipated aspects of the universal Turing machine. In 1961, Norbert Wiener suggested that Leibniz should be considered the patron saint of cybernetics.
In 1985, the German government created the Leibniz Prize, offering an annual award of 1.55 million euros for experimental results and 770,000 euros for theoretical ones. It was the world's largest prize for scientific achievement prior to the Fundamental Physics Prize.
The collection of manuscript papers of Leibniz at the Gottfried Wilhelm Leibniz Bibliothek – Niedersächische Landesbibliothek was inscribed on UNESCO's Memory of the World Register in 2007.
# | Name | Relationship | Net Worth | Salary | Age | Occupation |
---|---|---|---|---|---|---|
#1 | Catharina Schmuck | Parents | N/A | N/A | N/A | |
#2 | Friedrich Leibniz | Parents | N/A | N/A | N/A |
Currently, Gottfried W. Leibniz is 376 years, 11 months and 2 days old. Gottfried W. Leibniz will celebrate 377th birthday on a Saturday 1st of July 2023. Below we countdown to Gottfried W. Leibniz upcoming birthday.