Gottfried W. Leibniz
## Celebrity Profile

## Physique

Name: | Gottfried W. Leibniz |

Real Name: | Gottfried Wilhelm Leibniz |

Occupation: | Scientists |

Gender: | Male |

Birth Day: | July 1, 1646 |

Death Date: | 14 November 1716(1716-11-14) (aged 70) Hanover, Electorate of Hanover, Holy Roman Empire |

Age: | Aged 70 |

Birth Place: | Leipzig, Electorate of Saxony, Holy Roman Empire, Germany |

Zodiac Sign: | Leo |

Height: | in centimeters - N/A |

Weight: | in kg - N/A |

Eye Color: | N/A |

Hair Color: | N/A |

Blood Type | N/A |

Tattoo(s) | N/A |

Gottfried W. Leibniz was born on **July 1, 1646** in Leipzig, Electorate of Saxony, Holy Roman Empire, Germany (70 years old). Gottfried W. Leibniz is **a Scientists**, zodiac sign: **Leo**. Find out Gottfried W. Leibniznet worth 2020, salary 2020 detail bellow.

As per our current Database, Gottfried W. Leibniz died on 14 November 1716(1716-11-14) (aged 70)

Hanover, Electorate of Hanover, Holy Roman Empire.

Undisclosed

Not known

1646

1661

1666

In early 1666, at age 19, Leibniz wrote his first book, De Arte Combinatoria (On the Combinatorial Art), the first part of which was also his habilitation thesis in Philosophy, which he defended in March 1666. De Arte Combinatoria was inspired by Ramon Llull's Ars Magna and contained a proof of the existence of God, cast in geometrical form, and based on the argument from motion.

His next goal was to earn his license and Doctorate in Law, which normally required three years of study. In 1666, the University of Leipzig turned down Leibniz's doctoral application and refused to grant him a Doctorate in Law, most likely due to his relative youth. Leibniz subsequently left Leipzig.

Leibniz then enrolled in the University of Altdorf and quickly submitted a thesis, which he had probably been working on earlier in Leipzig. The title of his thesis was Disputatio Inauguralis de Casibus Perplexis in Jure (Inaugural Disputation on Ambiguous Legal Cases). Leibniz earned his license to practice law and his Doctorate in Law in November 1666. He next declined the offer of an academic appointment at Altdorf, saying that "my thoughts were turned in an entirely different direction".

1669

1671

In this regard, a 1669 invitation from Duke John Frederick of Brunswick to visit Hanover proved to have been fateful. Leibniz had declined the invitation, but had begun corresponding with the duke in 1671. In 1673, the duke offered Leibniz the post of counsellor. Leibniz very reluctantly accepted the position two years later, only after it became clear that no employment was forthcoming in Paris, whose intellectual stimulation he relished, or with the Habsburg imperial court.

In 1671, Leibniz began to invent a machine that could execute all four arithmetic operations, gradually improving it over a number of years. This "stepped reckoner" attracted fair attention and was the basis of his election to the Royal Society in 1673. A number of such machines were made during his years in Hanover by a craftsman working under his supervision. They were not an unambiguous success because they did not fully mechanize the carry operation. Couturat reported finding an unpublished note by Leibniz, dated 1674, describing a machine capable of performing some algebraic operations. Leibniz also devised a (now reproduced) cipher machine, recovered by Nicholas Rescher in 2010. In 1693, Leibniz described a design of a machine which could, in theory, integrate differential equations, which he called "integraph".

1672

Von Boyneburg did much to promote Leibniz's reputation, and the latter's memoranda and letters began to attract favorable notice. After Leibniz's service to the Elector there soon followed a diplomatic role. He published an essay, under the pseudonym of a fictitious Polish nobleman, arguing (unsuccessfully) for the German candidate for the Polish crown. The main force in European geopolitics during Leibniz's adult life was the ambition of Louis XIV of France, backed by French military and economic might. Meanwhile, the Thirty Years' War had left German-speaking Europe exhausted, fragmented, and economically backward. Leibniz proposed to protect German-speaking Europe by distracting Louis as follows. France would be invited to take Egypt as a stepping stone towards an eventual conquest of the Dutch East Indies. In return, France would agree to leave Germany and the Netherlands undisturbed. This plan obtained the Elector's cautious support. In 1672, the French government invited Leibniz to Paris for discussion, but the plan was soon overtaken by the outbreak of the Franco-Dutch War and became irrelevant. Napoleon's failed invasion of Egypt in 1798 can be seen as an unwitting, late implementation of Leibniz's plan, after the Eastern hemisphere colonial supremacy in Europe had already passed from the Dutch to the British.

Thus Leibniz went to Paris in 1672. Soon after arriving, he met Dutch physicist and mathematician Christiaan Huygens and realised that his own knowledge of mathematics and physics was patchy. With Huygens as his mentor, he began a program of self-study that soon pushed him to making major contributions to both subjects, including discovering his version of the differential and integral calculus. He met Nicolas Malebranche and Antoine Arnauld, the leading French philosophers of the day, and studied the writings of Descartes and Pascal, unpublished as well as published. He befriended a German mathematician, Ehrenfried Walther von Tschirnhaus; they corresponded for the rest of their lives.

1673

1674

1675

In 1675 he tried to get admitted to the French Academy of Sciences as a foreign honorary member, but it was considered that there were already enough foreigners there and so no invitation came. He left Paris in October 1676.

Leibniz is credited, along with Sir Isaac Newton, with the discovery of calculus (differential and integral calculus). According to Leibniz's notebooks, a critical breakthrough occurred on 11 November 1675, when he employed integral calculus for the first time to find the area under the graph of a function y = f(x). He introduced several notations used to this day, for instance the integral sign ∫, representing an elongated S, from the Latin word summa, and the d used for differentials, from the Latin word differentia. Leibniz did not publish anything about his calculus until 1684. Leibniz expressed the inverse relation of integration and differentiation, later called the fundamental theorem of calculus, by means of a figure in his 1693 paper Supplementum geometriae dimensoriae.... However, James Gregory is credited for the theorem's discovery in geometric form, Isaac Barrow proved a more generalized geometric version, and Newton developed supporting theory. The concept became more transparent as developed through Leibniz's formalism and new notation. The product rule of differential calculus is still called "Leibniz's law". In addition, the theorem that tells how and when to differentiate under the integral sign is called the Leibniz integral rule.

1676

Leibniz met Spinoza in 1676, read some of his unpublished writings, and has since been suspected of appropriating some of Spinoza's ideas. While Leibniz admired Spinoza's powerful intellect, he was also forthrightly dismayed by Spinoza's conclusions, especially when these were inconsistent with Christian orthodoxy.

Because Leibniz was a mathematical novice when he first wrote about the characteristic, at first he did not conceive it as an algebra but rather as a universal language or script. Only in 1676 did he conceive of a kind of "algebra of thought", modeled on and including conventional algebra and its notation. The resulting characteristic included a logical calculus, some combinatorics, algebra, his analysis situs (geometry of situation), a universal concept language, and more. What Leibniz actually intended by his characteristica universalis and calculus ratiocinator, and the extent to which modern formal logic does justice to calculus, may never be established. Leibniz's idea of reasoning through a universal language of symbols and calculations remarkably foreshadows great 20th-century developments in formal systems, such as Turing completeness, where computation was used to define equivalent universal languages (see Turing degree).

1677

In 1677, he was promoted, at his request, to Privy Counselor of Justice, a post he held for the rest of his life. Leibniz served three consecutive rulers of the House of Brunswick as historian, political adviser, and most consequentially, as librarian of the ducal library. He thenceforth employed his pen on all the various political, historical, and theological matters involving the House of Brunswick; the resulting documents form a valuable part of the historical record for the period.

In 1677, Leibniz called for a European confederation, governed by a council or senate, whose members would represent entire nations and would be free to vote their consciences; this is sometimes considered an anticipation of the European Union. He believed that Europe would adopt a uniform religion. He reiterated these proposals in 1715.

1679

1684

1685

1686

1690

1691

Leibniz was appointed Librarian of the Herzog August Library in Wolfenbüttel, Lower Saxony, in 1691.

1692

The population of Hanover was only about 10,000, and its provinciality eventually grated on Leibniz. Nevertheless, to be a major courtier to the House of Brunswick was quite an honor, especially in light of the meteoric rise in the prestige of that House during Leibniz's association with it. In 1692, the Duke of Brunswick became a hereditary Elector of the Holy Roman Empire. The British Act of Settlement 1701 designated the Electress Sophia and her descent as the royal family of England, once both King William III and his sister-in-law and successor, Queen Anne, were dead. Leibniz played a role in the initiatives and negotiations leading up to that Act, but not always an effective one. For example, something he published anonymously in England, thinking to promote the Brunswick cause, was formally censured by the British Parliament.

Although the mathematical notion of function was implicit in trigonometric and logarithmic tables, which existed in his day, Leibniz was the first, in 1692 and 1694, to employ it explicitly, to denote any of several geometric concepts derived from a curve, such as abscissa, ordinate, tangent, chord, and the perpendicular (see History of the function concept). In the 18th century, "function" lost these geometrical associations. Leibniz also believed that the sum of an infinite number of zeros would equal to one half using the analogy of the creation of the world from nothing. Leibniz was also one of the pioneers in actuarial science, calculating the purchase price of life annuities and the liquidation of a state's debt.

1700

1708

1711

In 1711, while traveling in northern Europe, the Russian Tsar Peter the Great stopped in Hanover and met Leibniz, who then took some interest in Russian matters for the rest of his life. In 1712, Leibniz began a two-year residence in Vienna, where he was appointed Imperial Court Councillor to the Habsburgs. On the death of Queen Anne in 1714, Elector George Louis became King George I of Great Britain, under the terms of the 1701 Act of Settlement. Even though Leibniz had done much to bring about this happy event, it was not to be his hour of glory. Despite the intercession of the Princess of Wales, Caroline of Ansbach, George I forbade Leibniz to join him in London until he completed at least one volume of the history of the Brunswick family his father had commissioned nearly 30 years earlier. Moreover, for George I to include Leibniz in his London court would have been deemed insulting to Newton, who was seen as having won the calculus priority dispute and whose standing in British official circles could not have been higher. Finally, his dear friend and defender, the Dowager Electress Sophia, died in 1714.

From 1711 until his death, Leibniz was engaged in a dispute with John Keill, Newton and others, over whether Leibniz had invented calculus independently of Newton. This subject is treated at length in the article Leibniz–Newton calculus controversy.

1716

1759

1768

1895

1900

1901

Leibniz's calculus ratiocinator, which resembles symbolic logic, can be viewed as a way of making such calculations feasible. Leibniz wrote memoranda that can now be read as groping attempts to get symbolic logic—and thus his calculus—off the ground. These writings remained unpublished until the appearance of a selection edited by Carl Immanuel Gerhardt (1859). Louis Couturat published a selection in 1901; by this time the main developments of modern logic had been created by Charles Sanders Peirce and by Gottlob Frege.

The systematic cataloguing of all of Leibniz's Nachlass began in 1901. It was hampered by two world wars and then by decades of German division into two states with the Cold War's "iron curtain" in between, separating scholars, and also scattering portions of his literary estates. The ambitious project has had to deal with writings in seven languages, contained in some 200,000 written and printed pages. In 1985 it was reorganized and included in a joint program of German federal and state (Länder) academies. Since then the branches in Potsdam, Münster, Hanover and Berlin have jointly published 57 volumes of the critical edition, with an average of 870 pages, and prepared index and concordance works.

1903

1906

1960

1961

1985

2007

# | Name | Relationship | Net Worth | Salary | Age | Occupation |
---|---|---|---|---|---|---|

#1 | Catharina Schmuck | Parents | N/A | N/A | N/A | |

#2 | Friedrich Leibniz | Parents | N/A | N/A | N/A |

Currently, Gottfried W. Leibniz is 376 years, 11 months and 2 days old. Gottfried W. Leibniz will celebrate 377th birthday on a Saturday 1st of July 2023. Below we countdown to Gottfried W. Leibniz upcoming birthday.

Days

Hours

Minutes

Seconds

- Who is Gottfried W. Leibniz ?
- How rich is Gottfried W. Leibniz ?
- What is Gottfried W. Leibniz 's salary?
- When is Gottfried W. Leibniz 's birthday?
- When and how did Gottfried W. Leibniz became famous?
- How tall is Gottfried W. Leibniz ?
- Who is Gottfried W. Leibniz 's girlfriend?
- List of Gottfried W. Leibniz 's family members?

Scientists

Scientists

Scientists

Scientists

Scientists

President

Scientists

Scientists

Scientists

Basketball Player